

Hi guys welcome to Tamil Hacks :

Python is an interpreted, high-level, general-purpose

programming language. Created by Guido van Rossum and

first released in 1991, Python's design philosophy emphasizes

code readability with its notable use of significant whitespace.

Python is a beautiful language. It’s easy to learn and fun, and its

syntax is simple yet elegant. Python is a popular choice for

beginners, yet still powerful enough to back some of the world’s

most popular products and applications from companies like NASA,

Google, Mozilla, Cisco, Microsoft, and Instagram, among others.

Whatever the goal, Python’s design makes the programming

experience feel almost as natural as writing in English.

Here is all the coding’s used in the course during the

video.

Numbers
integers 1 2 3 4 5
float 1.2 5.6 9.5 10.50
complex 5+2j

print(3 // 2)

- * / + ** %

variables , a-z , _ , watch , Watch

Watch_price = 500

Customer_Name = "karthik"

Watch1 = Name1 = 750

print(Watch_price)
print(Customer_Name)

strings
word = 'Hi'
word2 = " my age is 24 , why can't i vote "
para = """ this
is
my para
"""

word3 = "hello, world"

slicing , length , strip()
print(word3[-5:-1])
print(len(para))
print(word2.strip())

print(word.lower())
print(word.upper())

a = 'raj'
print(a.replace('j', 'ju'))

print(a.split('a'))

print("hew" in word3)

a1 = 'hi'
a2 = ' karthik'
print(a1 + a2)

Boolean
print(1 == 1)
operators
arthimetic
=

> < >= <=
and or not
is is not
in not in
& | ^ ~ << >>

number1 = 10
number1 /= 10

number2 = number1 + 20

casting
a = float(10)
b = int(10.10)
c = str(120)
print(a, b, c)

type
d = "h3"
print(type(d))

list
fruits = ['apple', 'orange', 'cherry']
fruits[1] = 'banana'
fruits.append("new")

print(fruits)

number = [11, 2, 20, 0]
number.sort(reverse=True)
print(number)

add = fruits + number
print(add)

Tuples
fruits = ('apple', 'orange', 'cherry')
print(fruits)

number = (11, 2, 20, 0)
print(number)

add = fruits + number
print(add)

Dictionary , get()
my_data = {
 "name": "karthik",
 "age": "24"
}
my_data["age"] = "25"
print(my_data.get("age"))

if statements
age = 18
if age > 18:
 print("you can vote in election")
elif age == 18:
 print("apply for vote id")
else:
 print("you have to wait till 18")

a, b = 10, 20
if a == 10 or b == 20:

 # and , or nesting of if
 print("correct")
 if b == 20:
 print("hi")
else:
 print("incorrect")

functions def
def addition(a, b):
 print(a + b)

def subtraction(a, b):
 print(a - b)

def hi(name):
 print("Hi," + name)

def fun(a):
 return a*100

addition(12, 10)
addition(100, 300)
subtraction(50, 25)
hi("balu")
print(fun(5))

loops

name = 'karthik'

for loop

for letters in name:
 print(letters)

fruits = ['apple', 'orange', 'banana']

for fruit in fruits:
 print(fruit)

for i in "hi, welcome":
 if i == ',':
continue

 print(", is present")
break
 else:
 print(", is not present")

range 5 - 0,1,2,3,4
for number in range(10, 30, 4):
 print(number)

for number in range(5):
 print(number)

 for i in range(2):
 print(i)
else:
 print('all numbers are finished')

loops while

i = 1
while i < 5: # 5 < 5
 print(i)
 i += 1
else:
 print("over")

Lambda

add_5 = lambda number: number + 10
print(add_5(25))

print(add_5(120))

input
number1 = float(input('enter number1'))
number2 = int(input('enter number2'))
print(number1 + number2)

name = input("type your name")
print("my name is " + name)

simple calculator

def add(a, b):
 return a+b

def sub(a, b):
 return a-b

def mul(a, b):
 return a-b

def div(a, b):
 return a//b

print("""Select operation
1.add
2.sub
3.mul

4.div
""")

choice = int(input("enter your choice"))
a = int(input("enter number 1"))
b = int(input("enter number 2"))

if choice == 1:
 print(add(a, b))
elif choice == 2:
 print(sub(a, b))
elif choice == 3:
 print(mul(a, b))
elif choice == 4:
 print(div(a, b))
else:
 print("enter correct choice")
final task answer

print()

print('Hi, I can code in Python!')

print('''

My favourite animal is dog

 o-###-

 | | #

This is my home

 |

 | |

 |# |____

 | | |

 | #| # |

 _|___|_#__|_

Now Puzzle time

''')

born = input('What year were you

born?')

born = int(born)

age = 2025 - born

print('In the year 2025 you\'ll be',

age, 'years old!')

Numbers

Python has integers and floats. Integers are simply whole numbers, like 314, 500, and 716.

Floats, meanwhile, are fractional numbers like 3.14, 2.867, 76.88887. You can use the type

method to check the value of an object.

>>> type(3)

<class 'int'>

>>> type(3.14)

<class 'float'>

>>> pi = 3.14

>>> type(pi)

<class 'float'>

1

2

3

4

5

In the last example, pi is the variable name, while 3.14 is the value.

You can use the basic mathematical operators:

1

2

3

4

5

8 1.5

9 >>> 3 * 3

10 9

11 >>> 3 ** 3

12 27

13 >>> num = 3

14 >>> num = num - 1

15 >>> print(num)

16 2

17 >>> num = num + 10

18 >>> print(num)

19 12

20 >>> num += 10

21 >>> print(num)

22 22

23 >>> num -= 12

24 >>> print(num)

25 10

26 >>> num *= 10

27 >>> num

28 100

>>> 3 + 3

6

>>> 3 - 3

0

>>> 3 / 3

1.0

>>> 3 / 2

There’s also a special operator called modulus, , that returns the remainder after integer

division.

1

2

One common use of modulus is determining if a number is divisible by another number. For

example, we know that a number is even if it’s divided by 2 and the remainder is 0.

1

2

3

4

Finally, make sure to use parentheses to enforce precedence.

1

2

Strings

Strings are used quite often in Python. Strings, are just that, a string of characters - which s

anything you can type on the keyboard in one keystroke, like a letter, a number, or a back-

slash.

Python recognizes single and double quotes as the same thing, the beginning and end of the

strings.

1

2

3

4

What if you have a quote in the middle of the string? Python needs help to recognize quotes

as part of the English language and not as part of the Python language.

1

2

3

>>> (2 + 3) * 5

25

>>> 2 + 3 * 5

17

>>> "I ’cant do that"

'I ’cant do that'

>>> "He said \"no\" to me"

'He said "no" to me'

>>> "string list"

'string list'

>>> 'string list'

'string list'

4

Now you can also join (concatenate) strings with use of variables as well.

1

2

3

4

If you want a space in between, you can change a to the word with a space after.

1

2

3

There are different string methods for you to choose from as well - like upper(), lower(),

replace(), and count().

upper() does just what it sounds like - changes your string to all uppercase letters.

1

2

3

Can you guess what lower() does?

1

2

3

replace() allows you to replace any character with another character.

1

2

3

>>> str = 'woah!'

>>> str.upper()

'WOAH!'

>>> a = "first "

>>> a + b

'first last'

>>> a = "first"

>>> b = "last"

>>> a + b

'firstlast'

>>> str = 'rule'

>>> str.replace('r', 'm')

'mule'

>>> str = 'WOAH!'

>>> str.lower()

'woah!'

Finally, count() lets you know how many times a certain character appears in the string.

1

2

3

You can also format/create strings with the format() method.

1 >>> "{0} is a lot of {1}".format("Python", "fun!")

'Python is a lot of fun!'

>>> number_list =['one', 'two', 'one', 'two', 'two']

>>> number_list.count('two')

3

Booleans

Boolean values are simply True or False .

Check to see if a value is equal to another value with two equal signs.

1

2

3

4

5

6

7

8

To check for inequality use !=.

1

2

3

4

5

6

7

8

You can also test for > , < , >= , and <=.

1 >>> 10 > 10

2 False

3 >>> 10 < 11

4 True

5 >>> 10 >= 10

6 True

7 >>> 10 <= 11

8 True

9 >>> 10 <= 10 < 0

>>> 10 != 10

False

>>> 10 != 11

True

>>> "jack" != "jack"

False

>>> "jack" != "jake"

True

>>> 10 == 10

True

>>> 10 == 11

False

>>> "jack" == "jack"

True

>>> "jack" == "jake"

False

10 False

11 >>> 10 <= 10 < 11

12 True

13 >>> "jack" > "jack"

14 False

15

16

Lists

Lists are containers for holding values.

1

2

3

To access the elements in the list you can use their associated index value. Just remember that

the list starts with 0, not 1.

1

2

If the list is long and you need to count from the end you can do that as well.

1

2

Now, sometimes lists can get long and you want to keep track of how many elements you have in

your list. To find this, use the len() function.

1

2

Use append() to add a new element to the end of the list and pop() to remove an element

from the end.

1

2

>>> "jack" >= "jack"

True

>>> len(fruits)

4

>>> fruits[-2]‘’

orange

>>> fruits[2]‘’

orange

>>> fruits = ['apple','lemon','orange','grape']

>>> fruits

['apple', 'lemon', 'orange', 'grape']

>>> fruits.append('blueberry')

>>> fruits

['apple', 'lemon', 'orange', 'grape', 'blueberry']

>>> fruits.append('tomato')

>>> fruits

['apple', 'lemon', 'orange', 'grape', 'blueberry', 'tomato']

>>> fruits.pop()

3

4

5

6

7

8

9

10

Check to see if a value exists using in the list.

1

2

3

4

Dictionaries

A dictionary optimizes element lookups. It uses key/value pairs, instead of numbers as place-

holders. Each key must have a value, and you can use a key to look up a value.

1

2

3

4

5

6

7

This will also work with numbers.

1

2

3

Output all the keys with keys() and all the values with values().

>>> 'apple' in fruits

True

>>> 'tomato' in fruits

False

>>> dict = {'one': 1, 'two': 2}

>>> dict

{'one': 1, 'two': 2}

>>> words = {'apple': 'red','lemon': 'yellow'}

>>> words

{'apple': 'red', 'lemon': 'yellow'}

>>> words['apple']

'red'

>>> words['lemon']

'yellow'

1

2

3

4

IF Statements

The IF statement is used to check if a condition is true.

Essentially, if the condition is true, the Python interpreter runs a block of statements called the

if-block. If the statement is false, the interpreter skips the if block and processes another block

of statements called the else-block. The else clause is optional.

Let’s look at two quick examples.

1

2

3

4

5

6

7

8

9

14

You can also add an elif clause to add another condition to check for.

1 >>> num = 21

2

3

4

5

6

7

Loops

>>> words.keys()

dict_keys(['apple', 'lemon'])

>>> words.values()

dict_values(['red', 'yellow'])

>>> num = 20

>>> if num == 20:

... print('the number is 20')

... else:

... print('the number is not 20')

...

the number is 20

>>> num = 21

>>> if num == 20:

... print('the number is 20')

... else:

... print('the number is not 20')

...

the number is not 20
>>> if num == 20:

... print('the number is 20')

... elif num > 20:

... print('the number is greater than 20')

... else:

... print('the number is less than 20')

...

the number is greater than 20

There are 2 kinds of loops used in Python - the for loop and the while loop. for loops are

traditionally used when you have a piece of code which you want to repeat n number of times.

They are also commonly used to loop or iterate over lists.

1

2

3

4

5

6

while loops, like the for Loop, are used for repeating sections of code - but unlike a for

loop, the while loop continues until a defined condition is met.

1 >>> num = 1

2 >>> num

3 1

4 >>> while num <= 5:

5 ... print(num)

6 ... num += 1

7 ...

8 1

9

10 3

11 4

12 5

Functions

Functions are blocks of reusable code that perform a single task.

You use def to define (or create) a new function then you call a function by adding parameters

to the function name.

1

2

3

4

>>> colors = ['red', 'green', 'blue']

>>> colors

['red', 'green', 'blue']

>>> for color in colors:

... print('I love ' + color)

...

I love red

I love green

I love blue

>> def multiply(num1, num2):

... return num1 * num2

...

>>> multiply(2, 2)

4

5

You can also set default values for parameters.

1

2

3

4

5

>>> def multiply(num1, num2=10):

... return num1 * num2

...

>>> multiply(2)

20

	Numbers
	Strings
	Booleans
	Lists
	Dictionaries
	IF Statements
	1 >>> num = 21

	Loops
	Functions

